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ABSTRACT
Child characters are commonly seen in leading roles in top-selling
video games. Previous studies have shown that child motions are
perceptually and stylistically different from those of adults. Cre-
ating motion for these characters by motion capturing children is
uniquely challenging because of confusion, lack of patience and reg-
ulations. Retargeting adult motion, which is much easier to record,
onto child skeletons, does not capture the stylistic differences. In
this paper, we propose that style translation is an effective way to
transform adult motion capture data to the style of child motion.
Our method is based on CycleGAN, which allows training on a
relatively small number of sequences of child and adult motions
that do not even need to be temporally aligned. Our adult2child
network converts short sequences of motions called motion words
from one domain to the other. The network was trained using a
motion capture database collected by our team containing 23 loco-
motion and exercise motions. We conducted a perception study to
evaluate the success of style translation algorithms, including our
algorithm and recently presented style translation neural networks.
Results show that the translated adult motions are recognized as
child motions significantly more often than adult motions.
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1 INTRODUCTION
Children in the age group 8 to 11 years old have been found to
spend as much as 8 hours weekly on video games [Johnson 2018].
Such trends make children important markets for the video game
and electronic entertainment industry. Games such as Just Dance,
by Ubisoft, and Ring Fit Adventure, by Nintendo, are designed to
motivate children to exercise. As a result, there is a need to identify
methods for synthesizing child motions.

Keyframing requires hours of manual effort from trained ani-
mators to create realistic and compelling motion. Motion capture
(mocap), the leading technology for creating animated characters
from actual human motion data, has the advantage of maintaining
realism, capturing subtle secondary movements, and following real
world physics [Menache 2000]. However, motion capturing children
is full of difficulties. Children get confused with the instructions,
lack patience, and are hard to collaborate with [Piaget 2015], espe-
cially at very young ages. These difficulties are the reason there
are few online motion repositories. The most well-known mocap
repositories, such as the CMU [2020] and OSU [2020] databases,
consist only of adult motions. Currently, the Kinder-gator [Aloba
et al. 2018] and the Human Motion Database [Guerra-Filho and
Biswas 2012] are the only publicly accessible repositories that con-
tain child motion. For games in particular, an abundance of action
types, repetitions and variations allows for realism in real time play.

One way to overcome this scarcity of child motion data is to
retarget easily available motion from adults to a child sized skeleton.
However, retargeting mostly involves changes in the dimensions
of limbs, so mapping adult motion directly on child characters fails
to transfer the style and nuances of the children motion such as
speed and variability. Style translation, that is, learning a mapping
between two labeled motion capture sequences, has been exten-
sively studied, starting with approaches by Brand and Hertzmann
[2000] and Gleicher [1998] to recent advances made by deep neural
networks [Aberman et al. 2020; Du et al. 2019a; Holden et al. 2017,
2016, 2015; Mason et al. 2018; Smith et al. 2019].

In this paper we devise an adult-to-child motion translation al-
gorithm based on the CycleGAN [Zhu et al. 2017] architecture.
CycleGAN has been successfully used in the past for transforming
image styles without paired training data. This characteristic is
critical for adult-to-child translation due to the very limited avail-
ability of child data. Generative Adversarial Networks (GANs) have
rarely been used in character animation because of the difficulty
to train a mapping that exhibits temporal dynamic behavior and
generates temporally coherent and realistic movements. We show
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that GANs have the capacity to learn the mapping between two
distinct distributions, thus enabling style translation from the adult
domain to a child domain in the absence of motion alignment.

We �rst collected 23 motions from both adults and children,
which we plan to make available for future research. Motion cap-
turing children is uniquely challenging and our motion dataset
creates an authentic corpus for future research on style transla-
tion and motion generation. To train ouradult2childnetwork, we
sliced motion sequences into shorter temporal windows calledmo-
tion words, in a similar manner as Aristidou et al. [2018a]. The use
of motion words helps the network to learn both the spatial and
temporal information about that motion. The synthesis of motion
words is conditioned using several losses, including an adversarial,
cycle consistency, and temporal coherence. All these conditions
contribute to a realistic and smooth motion synthesis that enhances
the stylistic variability in childish motion.

We evaluated ouradult2childtranslation in terms of naturalness
and child-like-ness via a perception study. User responses indicate
that our method produces motion that can be distinguished from
adult motion in terms of child-like-ness, similar to state-of-the-art
methods by Holden et al. [2015] and Aberman et al. [2020], but
without needing motion alignment, and with signi�cantly lesser
pre-processing and training data.

The main scienti�c contributions of the paper are: (1)Architec-
ture: We are the �rst to adapt a cycleGAN architecture for motion
style transfer in such a way that the neural network is able to alter
the timing of the motion. We redesigned the generators and the
discriminators to extract meaningful features from motion inputs.
Our demonstration of this adapted architecture opens the path
forward for style transfer networks that do not need temporally
aligned data. We further demonstrate the advantage of temporal
coherence loss terms within the cycleGAN framework to create nat-
ural and smooth output motions. (2)Representation: We espouse
joint angles as an animation-centric representation scheme for this
architecture and task. This representation sets us apart from previ-
ous machine learning-centric work that has used joint positions to
make it easier to train the network. An animation-centric approach,
in contrast, looks ahead to how the output of the neural network
will be bound to a skeleton and skinned. We further add to evidence
in favor of motion words as motion representation schema that can
encode both temporal and spatial changes. (3)Dataset: We release
a high quality dataset of children's movements on a publicly acces-
sible repository. This dataset is the �rst of its kind as it captures via
an optical motion capture system the natural behavior of preteen
children in response to verbal prompts.

2 RELATED WORK
In this section, we discuss brie�y the literature that has studied typ-
ically developing children in contrast to typically developing adults,
methods for motion retargeting and style transfer, and examine
how the assumptions and design constraints underlying state of
the art algorithms impact theadult2childstyle translation problem.

Domain Knowledge about Child Motion: A child body is not
a mini-version of an adult body. There are several di�erences: for
instance, the ratio of the size of the head to body height continues
to decrease as children grow; the center of gravity for children is

located higher than adults, etc. [Huelke 1998]. Several studies have
been conducted that study the di�erences between the child and
adults behavior and motion, in terms of mass body, motor control,
skillful, coordination, and energy [Aloba 2019; Hraski et al. 2015;
Huelke 1998; Nader et al. 2008]. More particularly, Jain et al. [2016]
found that naive viewers can identify if a motion was performed
by a child or an adult, even when they are completing the same
actions. It follows that child motions are stylistically di�erent from
adult motions.

Motion Retargeting and Dynamic Scaling: Previous graph-
ics research has extensively studied an approach to adapt motion
from one skeleton to a di�erently sized skeleton, namely, motion
retargeting [Choi and Ko 1999; Gleicher 1998; Hecker et al. 2008].
One could say that easily available adult motion capture data can be
retargeted to a child sized skeleton. However, while skeletal retar-
geting captures changes in motion needed to accommodate changes
in limb lengths, it does not account for biomechanical di�erences.
Dynamic scaling accounts for biomechanics by scaling both length
and time in such a way that gravity is preserved [Hodgins and Pol-
lard 1997; Raibert and Hodgins 1991]. However, as shown by Dong
et al. [2017], scaling adult motion directly on child characters fails
to transfer the childish, playful, and carefree style of the children
motion. Dong et al. [2017] found also that the dynamically scaled
motions look more childlike to naive viewers, but not as childlike
as motion captured from actual children. We have adapted their
perceptual evaluation framework so as to rank various approaches
by their e�ectiveness at theadult2childproblem.

Style Transfer: Distinct from motion retargeting, a number of
methods have been developed in the literature to transform motion
so that it has a di�erent style even if it is on the same skeleton, for
example, a neutral walk to a happy walk [Amaya et al. 1996; Unuma
et al. 1995; Witkin and Popovi¢ 1995]. Because style is a subjective
characteristic, di�cult to express with mathematics, methods were
developed to infer style features given exemplars in the form of
large databases [Aristidou et al. 2017; Brand and Hertzmann 2000;
Ikemoto et al. 2009; Ma et al. 2010; Shapiro et al. 2006; Taylor and
Hinton 2009; Wang et al. 2007; Yumer and Mitra 2016]. In this
class of methods, Dong et al. [2018] applied the method of Hsu
et al. [2005] to theadult2childproblem. They trained a linear time-
invariant model to extract the stylistic aspect of motion using a
database of matched pairs of adult and child motion. Methods that
rely on paired training data have an inherent burden associated
with them: collecting child motion capture data in such a way that
they respond to the same prompts as adults. In contrast, a method
that does not require matched pairs makes it much easier to collect
exemplar child motions.

Deep Neural Networks: In recent years, deep learning methods
have shown promising results in areas such as image processing
and style transfer, e.g., [Gatys et al. 2016]. For instance, Holden et al.
[2015] stylized motion by minimizing an optimization function that
preserves naturalness and smoothness as well as matches a desired
style that was extracted via autoencoders. There were subsequent
approaches that sought to reduce the amount of paired training
data needed for style transfer, requiring only a limited number of
style examples or a short exemplar motion clip for the desired style
supplemented with a large database of neutral motions [Du et al.
2019a,b; Mason et al. 2018]. These methods, also only work for
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locomotion and cyclic motions. We note that even a database of
neutral motions requires children to be motion captured, which is
a bottleneck in itself. Thus motivated, our approach investigates
the use of CycleGANs to learn style transfer with a relatively small
number of exemplars.

Recently, Smith et al. [2019] introduced a computationally e�-
cient method using three multi-layer neural networks that motion
to be adjusted in a latent style space, thus achieving real-time style
transfer with low memory requirements. The main limitation in
their approach is that they have a separate network to learn the
timing, and this timing adjustment is applied as a post-process.
Aberman et al. [2020] encode motion into two latent codes, one for
motion content and one for style. Their approach injected a new
style by altering the deep features of motion, but did not change
the timing. In contrast to these recent approaches, we learn timing
along with pose within the stylization network.

Generative Adversarial Networks (GANs) work well with a small
dataset compared to other deep learning architectures. They also do
not require coupled training data. However, despite the success of
GANs in image and video processing Isola et al. [2017], they are not
popular in character animation because of the di�culty in modeling
the temporal dynamics of movements. The few methods that use
adversarial learning for motion synthesis and stylization [Barsoum
et al. 2018; Wang et al. 2020] only deal with pose changes and not
with timing. CycleGAN is an architectural variant of GANs that
allows for unpaired datasets to be leveraged for style transfer [Zhu
et al. 2017]. Our contribution is to adapt this framework for the
temporal dimension. Similar to patch-based image style transla-
tion, we divide motion sequences into short temporal windows
named motion words. Motion words allow the network to learn
both temporal and spatial information about the motion [Aristidou
et al. 2018b]. We further extend the original CycleGAN network
by introducing two new loss terms in the network's architecture,
one to consider the temporal evolution of motion, and the other for
smooth blending between the motion words. Our ablation study
evaluated the impact of each introduced loss term separately.

3 DATA ACQUISITION
Existing motion capture datasets, such as the CMU [2020] motion
capture database, are publicly available but do not provide examples
of children. Other datasets that include motion data of children,
such as the Aloba et al. [2018] use a Microsoft Kinect v1.0 device
for data collection. The use of a Kinect v1.0 is limiting in several
ways: it is a low-resolution RGB-depth camera with a 320x240 16-bit
depth sensor and a 640x480 32-bit color sensor, at a capturing rate of
30Hz. This low spatial and temporal resolution favours interactive
gaming experiences over accurate pose reconstruction, resulting in
the loss of key information for faster motions. A kinect v1.0 device
also limits the capture space to a small region of about two square
meters. As a result, the Aloba et al. [2018] dataset features noisy
information, with unstable foot contacts, and limits the subject to
perform motions such as walking and running in-place.

In this work, we acquired adult and child similar motions using a
10-camera Vicon optical motion capture system (1080p resolution).
This commercial system is capable of capturing retro-re�ective 3d
markers, with sub-millimeter accuracy, at a frame rate of 120Hz.
We use a total 53 markers per subject. Each marker is carefully

placed on the subject, denoting pivot points and joint segmentation,
creating an accurate reconstruction of a fully articulated subject. We
instruct the subjects to perform their actions in a capture volume
of 10� 8 meters, a space large enough to capture full locomotion
cycles and other dynamic and expressive motions.

We invited nine adults (older than 18 years) and eight children
(all participants were from 5-10 years old) and recorded a variety
of dynamic motions. We collected a variety of takes that can be
categorized into three types of motions: (a) discrete actions, (b)
cyclic locomotion, and (c) dynamic combinations. In our observa-
tions, children's actions are playful, less predictable than adults,
and appear uncoordinated at times; this is precisely what makes a
child's motion authentic. We captured the followingdiscrete action
examples: �Throw a ball with left arm�, �Throw a ball with right
arm�, �Punch�, �Kick�, �Jump with one leg�,�Jump with the other leg�,
�Idle�, �Broad Jump Forward�, �Jump as high as you can in place�
�Jump�, �5 Jumping jacks�;cyclic locomotionexamples:�Walk�, �Walk
as fast as you can�, �Hop Scotch�, �Sneaky Walk�, �Happy Walk�,
�Jog�, �Run as fast as you can�, �Skip�; anddynamic combination
examples: �Run and Jump�, �Walk, step over obstacle�. We captured
2-4 repetitions for each action type for each subject.

Raw motion capture data were converted to .bvh �le format (us-
ing the default Vicon application); data acquisition problems, such
as missing data due to marker occlusions, were �xed with using de-
fault features in Shogun post software. The motion data was catego-
rized and labeled with the motion type, subject type (adult or child),
and subject ID. We released this data on a publicly accessible repos-
itory for future studies (in fbx, bvh, and csv formats). (URL: https:
//jainlab.cise.u�.edu/publications.html#Adult2ChildCycleGAN)

More details about data acquisition and the peculiarities of cap-
turing and dealing with young children can be found in Appendix A.

4 METHODOLOGY
The main premise of this work is that motion sequences can be
broken down to smaller movements and then we can apply image
translation algorithms in a similar manner to image patches; those
short temporal windows can carry the temporal and spatial proper-
ties of motions, including the temporal evolution, and capture their
essences and stylistic behavior.

4.1 Data Representation
Motion data are represented using joint angles wherein each artic-
ulated skeleton consists of 25 joints. The choice of joint angles as
the motion representation sets us apart from most existing work
where joint positions are used as input to neural networks. This
design decision re�ects an animation-centric approach to the style
transfer problem, rather than a machine learning-centric approach.
With this approach we elevate the desirability of a skinned �nal
result, which makes it necessary to preserve the rotation along the
bone axes. Another key consideration is that limb lengths are very
di�erent between children and adults, and across children them-
selves. Joint angles capture that the elbow is bent about the same
for a child and an adult but the knee is not (for example) without
needing an intermediate retargeting step to a canonical skeleton.
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Figure 1: Our adult2child framework, based on the Cycle-
GAN architecture.

All joint angles are converted into unit quaternion format; the
quaternion representation is free of gimbal lock, and it supports in-
terpolation. Since the subjects may face di�erent directions during
the experiment, we translated the motions into local root space and
align their direction. The original motions were captured in 120fps.
We downsampled the motions to 60fps. Our motion sequences are
divided intomotion wordswith a temporal window of 60 frames,
e.g., [Aristidou et al. 2018a]. and an 20 frames stride; these overlap-
ping frames are later used for blending purposes. We normalized
the data inputs to the range of [-1,1] using the overallmaxandmin
values, and then, at a post-processing step, we de-normalized the
values back to their original range.

4.2 Network architecture
We adopted the CycleGAN architecture to learn the mapping be-
tween adult motions to childlike motions. The network was trained
on one motion word pair at a time. Usually CycleGAN networks
are trained using unpaired data from two speci�c domains, e.g.,
horse and zebra images. Similarly, in our case, we train the network
with motion words of the same motion type (e.g. adult jump with
child jump, adult kick with child kick, etc.).

Our network architecture consists of two GANs: one foradult2child
translation and the other one forchild2adulttranslation (see Fig-
ure 1). According to Zhu et al. [2017], having the two GANs forming
a cycle enables training without paired data and prevents modes
collapse. We denote adult motion asa and child motions asc . We
have two generators:Ga2cmaps adult motions to fake child motions
while Gc2a maps the child motions back to adult motions. We also
have two discriminators:Da that distinguish original adult motions

a from the fake adult motionsGc2a(c), andDc that di�erentiates
the original child motionsc from the fake child motionsGa2c(a).

Figure 2 describes the network generator; we used a stride-1
depth-wise convolution layer with �lter size 7, followed by two
stride-2 depth-wise convolution layers with �lter size 3. The joints
are arranged along the depth dimension of a layer. The kernel
only convolves along the quaternion dimension and the temporal
dimension, leaving individual joints separate. The output of the
third convolution layer feeds into nine residual blocks. Each residual
block consists of two convolution layers with �lter size 3 with a skip
layer connection. The decoder of the generator (Figure 3) consists
of two stride-1/2 deconvolution layers and one stride-1 convolution
layer of stride-1 with �lter size 7. Similarly to the original CycleGAN
natwork, the discriminator is a four-layer convolutional network
with 64, 128, 256, 512 �lters in each layer. All the layers have a �lter
size 4. The �rst three layers have a stride length of 2, while the
fourth and �fth layers have a stride length of 1.

4.3 Loss function
The goal of the GANs is to generate a mappingM : i 7! j, by creat-
ing instances similar to the target distribution conditional to the
input. The original CycleGAN consists of two losses: anadversarial
loss, that makes sure that the distribution of the generated motion
M(i) is indistinguishable from the distribution of the real motionj,
and acycle consistency lossthat couples it with an inverse mapping
I : j 7! i, to enforce motion to go back to its original domain. We
introduced two additional loss terms: thetemporal coherence loss
and thetransition loss. The temporal coherence loss ensures that
motions are smooth, preventing sudden jerks, and the transition
loss penalizes the di�erences between the overlapping frames in the
adjacent motion words. However, we observed that the transition
loss introduced some artifacts, such as unusual poses for overlap-
ping frames, and thus we left the transition loss out in the �nal loss
function. We show those artifacts in the supplementary video.

4.3.1 Adversarial loss.Equation 1 shows the loss for mapping the
adult domain to the child domain, while Equation 2 shows the loss
for the opposite mapping.

In our adversarial framework, the generator aims to create mo-
tion words that will be recognized as being a child's motion, while
the discriminator aims to catch generated instances as being trans-
lated motion rather than real motion capture.

The discriminator� 2 learns to assign 1 to motions that were
captured from child actors and 0 to motions to style translated
motion. The discriminator� 0 correspondingly learns to assign 1
to real adult motions and 0 to style translated motion. We adopted
the least square loss to avoid the vanishing gradient problem [Mao
et al. 2017].

L Dc = 0”5 � Ec� ?(c)[Dc(c) � 1] + 0”5 � Ea� ?(a)[Dc(Ga2c(a))] (1)

L Da = 0”5 � Ea� ?(a)[Da(a) � 1] + 0”5 � Ec� ?(c)[Da(Gc2a(c))] (2)

L Gc2a = 0”5 � Ec� ?(c)[Da(Gc2a(c)) � 1] (3)

L Ga2c = 0”5 � Ea� ?(a)[Dc(Ga2c(a)) � 1] (4)

4.3.2 Cycle consistency loss.We adopted the cycle consistency loss
from [Zhu et al. 2017] to increase the visual quality of the output
motion. Because our dataset contains di�erent motion types, having
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Figure 2: Architecture of the generator: it consists of a encoder with three convolutional layers, 9 residual blocks, and a decoder
with three deconvolutional layers. Number of kernels, kernel size, and stride length of each layer are also denoted.

Figure 3: Architecture of the discriminator

cycle consistency loss helps to preserve the content of the input
motion. It is de�ned as the di�erences betweenGa2c(Gc2a(c)) and
c for child domain (see Equation 5) and the di�erences between
Gc2a(Ga2c(a)) anda for adult domain (see Equation 6).

L 2~2;4•c = Ga2c(Gc2a(c)) � c (5)

L 2~2;4•a = Gc2a(Ga2c(a)) � a (6)

4.3.3 Temporal coherence loss.The temporal coherence loss (Equa-
tion 7) is introduced to increase the smoothness and stability of the
output motion. We compute the �rst derivative of the output mo-
tion as the delta between two consecutive poses for all the degrees
of freedom across all the frames in one motion word. It limits the
angle di�erences in the adjacent frames to prevent sudden changes
in the motions.

L 2>�4A4=24•a =
X

C

X

�$�
j jGa2c(a)(C) � Ga2c(a)(C� 1)jj (7)

L 2>�4A4=24•c =
X

C

X

�$�
j jGc2a(c)(C) � Gc2a(c)(C� 1)jj (8)

4.3.4 Transition loss.Our aim in adding the transition loss (Equa-
tion 10) is to create a smooth transition between motion words. The
transition loss penalizes the di�erences in the overlapping frames
of adjacent motion words. We use the average of the overlapping

frames in the adjacent motion words for blending. We denote over-
lapping frame number asC>E4A;0?, and the motion word index as8.

~ = Gc2a(c) (9)

L CA0=B8C8>=•c =
X

C

X

�$�
j j~8(C>E4A;0?:4=3) � ~8+1(0 :C>E4A;0?)j j

(10)

4.3.5 Overall loss function.The overall loss function (Equation 11)
can be computed as the weighted sum of all the terms described
above._” denotes the weights of each loss term, that were decided
experimentally via ablation studies, as shown in Section 5.

L Ga2c•Gc2a•Da•Dc = L Ga2c + L Gc2a + L Da + L Dc

+ _2~2;4� (L 2~2;4•c + L 2~2;4•a)

+ _2>�4A4=24� (L 2>�4A4=24•a + L 2>�4A4=24•c)

+ _CA0=B8C8>=� ! CA0=B8C8>=•c

(11)

We trained two generators to minimize the generator loss and
trained two discriminators to minimize the discriminator loss.

! = arg min
Ga2c•Gc2a

min
Da•Dc

L Da•Dc•Ga2c•Gc2a (12)

The contribution of each of these components is evaluated in
the ablation study in Section 5.3.

4.4 Post-processing
In the post-processing step, we scale the values back to the orig-
inal range of values using the saved min and max values for the
childlike motions. Then, we stitch the output (translated) motion
words of the childlike motionsGa2c(a) back to the original length
in order. We blend adjacent motion words by taking the average of
the overlapping frames. We then applied peak removal �lter and
Butterworth �lter with cuto� frequency of 7Hz to further smooth
out the motions.

5 RESULTS AND DISCUSSION
In this section, we provide several experiments to evaluate the per-
formance of ouradult2childmotion translation in terms of realism
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and style expressiveness of the generated motion, and compare
it with two alternative baseline methods: [Aberman et al. 2020]
and [Holden et al. 2016]. Adult-to-child motion translation is a
relatively special case of style transfer in character animation, and
this poses several challenges in the evaluation and comparison of
our method, mainly due to the lack of available motion datasets;
thus, we have evaluated our method with others using only the
dataset we have collected. We also conducted ablation studies to
quantitatively examine the performance and contribution of each
integrated losses. Last but not the least, we conducted a perceptual
study to evaluate the quality of our results.

5.1 Implementation Details
We implemented and trained the model on Google Colab Pro with
NVIDIA P100 graphics card. The model was written in Python
using TensorFlow. More speci�cally, we trained the generators and
discriminators in the following order:Ga2c•Dc•Gc2a•Da, and we
setL 2>�4A4=24= 30and L 2~2;4 = 15. We used the Adam solver
for gradient descent, while the batch size is 1 to incorporate the
transition loss. The network was trained 180 epochs with a learning
rate of 0.0002, and the training takes approximately 7 hours. After
100 epochs, the learning rate is decreased at a rate of 1% per epoch.
The size of the trained model is 8.67MB. The training data includes
90% of motions from three mocap actors. Our test data includes
the remaining 10% of data from the training set plus motions from
two di�erent actors. The purpose is to test the generalizability of
the model, and how it performs on motions that are similar to the
training data as well as motions that are di�erent from the training
data. We additionally trained two baseline methods for comparison
purposes. For Holden et al. [2016]'s architecture, we adopted the
pretrained network and fed our adult motion and child motion pairs
from the same motion types. For Aberman et al. [2020], we found
the pretrained network performed poorly with our adult motion,
therefore we trained the network for another 1000 epochs with our
dataset.

We applied theadult2childarchitecture on our motion dataset,
using two di�erent architectures, as shown in Figure 4 joint-wise
convolution and overall convolution. For joint-wise convolution,
we computed separate kernels for each joint. The kernels convolves
the motion words along the time axis and the quaternion axis. For
overall convolution. the kernels traversed each motion word along
the time axis and the joint axis. We have observed that the overall
convolution networks failed to create natural and childlike motions.
This happens since the same 2D kernels were applied to all the
joints, thus the network failed to extract the style from the entire
skeleton. On the other hand, the joint-wise convolution networks
operates on joint basis. In this case, di�erent kernels were applied
on each joint separately, with di�erent set of weights; allowing
the network to learn the transfer function on per joint makes style
modeling much easier.

5.2 Experimental Results
In this work, we introduce theadult2childframework to translate
adult motions to child-like motions without assuming the availabil-
ity of temporally aligned pairs of motion sequences in our training
database. Anecdotally, we have noticed that our output results

Figure 4: The 1D and 2D convolutional networks tested
in our experiments. The joint-wise convolution convolves
along the temporal axis (height) and the quaternion axis
(depth). The overall convolution convolves along the tempo-
ral axis and the joint axis (width).

exhibit some childlike characteristics: faster pace and swinging
arms. Figures 5 and 6 demonstrate �jump-as-high-as-you-can�and
�walk-as-fast-as-you-can� motions that have been translated from
an adult's motion. We show frame snapshots taken every 5 frames.
The top row shows the input adult motion used to generate the
fake child motions shown below, the second and third rows show a
generated childlike translated motion using the Holden et al. [2016]
and Aberman et al. [2020] methods, respectively, the forth row
shows results using ouradult2childmethod, whereas the �fth row
shows a reference child motion. It can be observed that both the
timing and the poses for our output childlike motions are more sim-
ilar to the movements of a child than adults. In particular, the spine
of the fake childlike motion generated using our method is more
exaggerated, while the movement of the hands rise-up appears
to be carefree and playful, compared to the tight and structured
movement of the adult; indeed, the methods of Holden et al. [2016]
and Aberman et al. [2020] modi�ed the adults motion to look more
like a child, but the poses of the generated motion do not look as
close to the actual child motion as ours. Finally, in contrast to the
method of Aberman et al. [2020], our method takes into considera-
tion the timing; the output childlike motion starts at the same pose
as the input adult motion, but towards the end, the output motion is
about 10 frames (one snapshot) faster than the input adult motion.
Readers are also encouraged to watch more examples of the results
in the accompanying video.

5.3 Ablation study
We conducted an ablation study to evaluate the e�ectiveness of
each component of our loss functionL Ga2c•Gc2a•Da•Dc, as described
in Eq. 11. We re-trained the entire network for 180 epochs, but each
time, we removed one component term in the loss function. Then,
we generated childlike motions using the same input motion for
each re-trained network.

Figure 7 illustrates the results of our ablation study in keyframe
poses; in this example, frame snapshots are taken every 3 frames.
The top row shows the output childlike motion when translated
from an adult's one, with all losses included, while the second
row shows the sameadult2childtranslation, but this time without
employing the temporal coherency loss. It can be observed that the
generated motion, when the temporal coherence loss is excluded,
is not smooth, neither natural, while the movement of some key
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